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Abstract

The scaling of turbulence statistics for wall-bounded thermal turbulent flow with different total heat flux gradients was investigated
using direct numerical simulation (DNS) of an incompressible turbulent channel flow with passive scalar transport at the friction Rey-
nolds number of 300 and the Prandtl number of 0.72. DNSs for four cases were performed, where the non-dimensional total heat flux
gradients were �1, �0.5, 0 and +0.5. It was revealed that temperature variance and turbulent heat flux were well scaled by the local
friction temperature. In addition, using the linear stress-heat flux model, it was shown that the appearance of the logarithmic temperature
profile was attributed to the distribution of the turbulent Prandtl number.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The study on turbulent transport of heat as a passive
scalar is attractive from a scientific point of view, and its
understanding is of great importance in many engineering
applications such as heat exchangers and gas turbines. In
particular, the investigation into the effect of different ther-
mal boundary conditions on turbulence statistics is essen-
tial to predict the heat transfer from the thermal wall
correctly. Therefore, many experimental and numerical
studies have been conducted in order to clarify the funda-
mental mechanism in a wall-bounded incompressible
turbulent flow with passive scalar transport. With the
increasing performance of the parallel computer, direct
numerical simulation (DNS) has played an important role
in investigating the detailed mechanism of a wall-bounded
incompressible turbulent flow with heat transfer. The DNS
of an incompressible turbulent channel flow with passive
scalar transport has been extensively studied and provided
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information valuable in both space and time for the mod-
eling of the wall-bounded turbulent flow with heat transfer
[1–13].

In spite of the many DNSs of the incompressible turbu-
lent channel flows with passive scalar transport, the effects
of total heat flux gradient bh on turbulence statistics have
not been well understood. In this study, DNS has been per-
formed to investigate the effects of bh on turbulence statis-
tics in the incompressible turbulent channel flows with
passive scalar transport. To this end, we performed DNS
for Cases 1, 2, 3 and 4, where the non-dimensional wall-
normal gradients of the total heat flux bh, which was
defined in Section 2, were �1, �0.5, 0 and +0.5, respec-
tively. The profiles of turbulence statistics are arranged
according to the heat flux gradient, and the new scaling
using the local friction temperature is proposed. In addi-
tion, the mean velocity and temperature laws are analyzed
with the aid of the linear stress and heat flux models.

2. Problem description

The subject of our investigation is the fully developed
thermal channel flow between flat parallel walls as show
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in Fig. 1. The flow field is governed by the continuity and
Navier–Stokes equations for incompressible flow without
the buoyancy effect
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where the italic indices i, j, k are obeyed by the convention
of summation. In Eqs. (1) and (2), ui (i = 1, 2, 3), p, q, and
m = l/q are velocity components in the xi direction, pres-
sure, density, and kinematic viscosity, respectively, where
l is the molecular viscosity. In this paper, x1, x2 and x3

directions are streamwise, wall-normal and spanwise,
respectively. In Eq. (2), dP/dx1 is the mean pressure gradi-
ent. In addition to the flow field, the governing equation of
passive scalar h = T � Tl, where T is the temperature and
the subscript l represents the value at the lower wall, is as
follows:
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where cp, j and Q are the specific heat at constant pressure,
thermal conductivity and homogeneous internal heat
source, respectively.

In a fully developed thermal plane channel flow, the
total shear stress and heat flux gradients are balanced with
the mean pressure gradient and the internal heat source,
respectively
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where h i and 0 represent the Reynolds average (over time
and x1–x3 plane) and deviation, respectively. The wall
boundary conditions for the velocity and temperature are
given so as to satisfy Eqs. (4) and (5).

Eqs. (1)–(3) are normalized by using the friction velocity
us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
, the friction temperature hs = �qw/qcpus and

the channel half width H, where sw and qw are the shear
stress and heat flux at the lower wall (x2 = �H), respec-
Fig. 1. Thermal plane channel flow.
tively, so that the non-dimensional continuity, Navier–
Stokes and passive scalar equations are
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where t* = tus/H and x�j ¼ xj=Hðj ¼ 1; 2; 3Þ. The super-
script + represents the variable normalized by us, hs and
q. The friction Reynolds and Prandtl numbers are defined
as Res = usH/m and Pr = cpl/j, respectively. The non-
dimensional total shear stress gradient is defined as b ¼
ðH=qu2

sÞðdstotal=dx2Þ ¼ ðH=qu2
sÞðdP=dx1Þ and is �1 for the

plane channel flow. The non-dimensional total heat flux
gradient is defined as bh = �(H/qcpushs)(dqtotal/dx2) =
�QH/ushs. Note that the thermal flow is classified by using
bh as shown in Eq. (8). In fact, this gives the general exten-
sion of the classification by Teitel and Antonia [5]. Note
that the minus sign appearing in the definition of bh is
introduced on the analogy of the velocity field and the
definition of heat flux, qj = �jdh/dxj.
3. Numerical methods and conditions

Basic equations for the present DNS of the thermal
channel flow are Eqs. (6)–(8). As the discrete method in
space, the Chebyshev-tau method is used in the wall-nor-
mal direction, and the Fourier pseudo-spectral method is
used in the streamwise and spanwise directions. The conti-
nuity and Navier–Stokes equations are solved simulta-
neously with the modified Kleiser–Schumann method
[14,15]. The skew-symmetric form for convection term is
used in Eqs. (7) and (8) for stable long-term integration
(see ref. [16]). The semi-implicit time marching algorithm
is used in Eqs. (7) and (8) where the diffusion term is trea-
ted implicitly with the Crank–Nicolson method, and a
third order Runge–Kutta scheme is used for all other terms
[17,18]. To solve the discrete Helmholtz equation of the
Chebyshev-tau coefficient, the quasi-tri-diagonal matrix
solver developed by Canuto et al. [19] was used.

In this study, we consider four computational cases with
the no-slip velocity wall boundary condition, which are
classified by the non-dimensional total heat flux gradient
bh. The computational cases are summarized in Table 1.
The Reynolds and Prandtl numbers are fixed at
Res = 300 and Pr = 0.72, respectively. The total shear
stress gradient b = �1 means that the upper and lower
walls are stationary, and the flow is driven by the mean
pressure gradient. The upper and lower walls for Cases 1,
2, 3 and 4 are isothermal. The values of temperature differ-
ence between upper and lower walls, Dhþ ¼ hþu � hþl , which
are given to realize the corresponding bh values, are also
shown in Table 1. The profiles of the non-dimensional total



Table 1
Computational cases

Case Res Pr b bh Dh+

Case 1 300 0.72 �1 �1 0
Case 2 300 0.72 �1 �0.5 22.4
Case 3 300 0.72 �1 0 44.5
Case 4 300 0.72 �1 +0.5 66.3
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Fig. 2. Profiles of total heat flux.
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heat flux, �qþtotalð¼ �hu0þ2 h0þi þ dhhi=dyþ=Pr), are shown in
Fig. 2. The wall unit is defined as y+ = y/dv, where
y = x2 + H is the distance from the lower wall and
dv = m/us is the viscous length scale. Computed total heat
flux gradients for Cases 1, 2, 3 and 4 agree well with the
given bh values, �1, �0.5, 0 and +0.5, respectively. Note
that Case 3 corresponds to the incompressible turbulent
channel flow between isothermal and adiabatic walls
[20,21].

The initial conditions of the present simulations are as
follows. The mean streamwise velocity is given by superim-
posing random velocity fluctuations upon the profile based
on Spalding’s law [22]. The wall-normal and spanwise
velocities are given by random velocity fluctuations with
zero mean values, while the plane-averaged velocity fluctu-
ation intensities are given by functions of the wall-normal
coordinate and go to zero at the wall. The temperature
fluctuation is zero, and the mean value is given by an
appropriate second polynomial function for each case.

For all cases, grid spacings in the periodic directions
(x1 and x3 directions) are uniform, and the wall-normal
grids are given by Gauss–Lobatto points [19]. The compu-
tational domain size (L1 � L2 � L3), number of grid
points (N1 � N2 � N3), and grid width in wall units
ðDxþ1 � Dxþ2 � Dxþ3 Þ are given in Table 2. The grid resolution
Table 2
Grid resolution

L1 � L2 � L3 Lþ1 � Lþ2 � Lþ3 N1 � N2 � N3 Dxþ1 � Dxþ2 � Dxþ3

2pH � 2H

� 2pH/3
1885 � 600
� 628

128 � 161
� 128

15 � (0.058–5.9)
� 4.9
is evaluated by Dxþi ¼ Dxi=dvði ¼ 1; 2; 3Þ, where Dxi is the
grid spacing in the xi direction. It is shown that the present
spatial resolution is comparable or better than that of pre-
vious DNS attempts for the corresponding incompressible
turbulent channel flow with the same spatial discretization
method (spectral). It is verified that the present DNS data
had sufficient resolution and domain size by examining
one-dimensional energy spectra and two-point correlations
(not shown here).

The present turbulence statistics are obtained by averag-
ing over space (x1 and x3 directions) and time of 20H/us

after the turbulent flow becomes stationary, where the time
increment Dt/(H/us) is 0.0004. The code verification is done
in the thermal channel flow of cases corresponding to Case 1
(b = �1, bh = �1) and Case 3 (b = �1, bh = 0) at the Rey-
nolds number of 150 and the Prandtl number of 0.72 (see
[21]). Note that DNSs for Case 2 (b = �1, bh = �0.5) and
Case 4 (b = �1, bh = + 0.5) have not been done as far as
we know.

4. Results and discussion

4.1. Mean velocity and temperature profiles

The mean velocity scaled by the friction velocity,
hu1i+ = hu1i/us, and the mean temperature scaled by the
friction temperature, hhi+ = hhi/hs, are shown in Fig. 3,
where the abscissa is the wall unit from the lower wall.
The mean velocity hu1i+ agrees well with the corresponding
DNS data of Iwamoto et al. [24] at Res = 300, in which the
simulation was carried out using the same spatial discreti-
zation method. The profiles of hhi+ at y+ < 20 for all the
cases are identical. However, the mean temperature scaled
by the wall variables increases with increasing bh on the
lower wall side.
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Fig. 3. Profiles of mean velocity and temperature in wall units.
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First, the profile of y+dhu1i+/dy+ is shown in Fig. 4 to
investigate the logarithmic law of the mean velocity. The
logarithmic regions of the velocity correspond to the
regions where y+dhu1i+/dy+ is constants. No apparent log-
arithmic region of velocity is found, and the well-known
bump appears around y+ ’ 200. This is explained by the
linear stress model proposed by Townsend [23] for the
analysis of mean velocity profile of an equilibrium bound-
ary layer. In a turbulent region (st� s‘), the total shear
stress profile is supposed to be linear as stotal ¼ qu2

s þ
ydstotal=dy, where dstotal/dy is a constant total shear stress
gradient. With the aid of the mixing length assumption,
(st/q)1/2 = ‘dhu1i/dy and ‘ = jy, the mean velocity gradient
is written as follows:

d u1h i
dy
¼ us

j
1þ by=Hð Þ1=2
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Fig. 5. Inspection of the logarithmic law of mean temperature:
y+dhhi+ dy+.
Although the above equation is integrable [23], we make
use of Eq. (9) for the analysis of the mean velocity law.
For instance, the logarithmic law for the mean velocity,
hu1i+ = (1/j)log y+ + B, is derived from Eq. (9) provided
that jby/Hj � 1. As following the above analysis, the loga-
rithmic law for the velocity appears in the region of
jby/Hj � 1, which is identical to y+� Res with b = �1,
where the wall unit y+ at the center of the channel corre-
sponds to the Reynolds number Res in this study. This is
why the apparent logarithmic region does not appear on
the mean velocity profile of the standard (pure Poiseuille,
b = �1) plane channel flow at Res = 300. In addition,
employing the expansion, (1 + x)a = 1 + ax + a(a �1)x2/
2! + a (a �1)(a �2)x3/3! + � � � , Eq. (9) is rewritten as
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¼ us
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The existence of additional second and higher terms ex-
plains the appearance of the bump in Fig. 4. The leading
order of the additional term is O((y/H)1), which strongly
restricts the upper bound of the logarithmic region. It also
supports the fact observed in a Poiseuille pipe flow experi-
ment [25] (Res = 9000) that the logarithmic law appears in
the region of y+ < 0.07Res.

Second, the profile of y+dhhi+/dy+ is shown in Fig. 5 to
investigate the logarithmic law of the mean temperature.
The logarithmic region of temperature seems to appear
only for Case 1. In order to analyze the mean temperature
law, we introduce the linear stress-heat flux model, which is
an extension of the linear stress model [23]. In a turbulent
region (qt� q‘), the total heat flux is supposed to be linear
as qtotal = �qcpushs + y dqtotal/dy, where dqtotal/dy is a con-
stant total heat flux gradient. The mixing length assump-
tion for the turbulent heat flux is qt = �qcp(st/q)1/2‘hdhhi/
dy, ‘h = jhy and jh = j/Prt, where Prt is the turbulent Pra-
ndtl number. Consequently, the mean temperature gradient
is written as follows:

d hh i
dy
¼ Prt

hs

j
1þ bhy=Hð Þ

y 1þ by=Hð Þ1=2
: ð11Þ

Notice that the linear stress and heat flux assumptions are
both valid for the fully developed thermal channel flow.
From Eq. (11), the logarithmic law for the mean tempera-
ture, hhi+ = (Prt/j)log y+ + Bh, is obtained provided that
jby/Hj � 1 and jbhy/Hj � 1 with a constant turbulent Pra-
ndtl number. Eq. (11) is also rewritten as

d hh i
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Eq. (12) indicates that the mean temperature profile de-
pends on both b and bh, while the mean velocity profile
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depends only on b (Eq. (10)), where the values of b and bh

in the present DNS are presented in Table 1. The increase
of the temperature gradient with increasing bh in Fig. 5 is
explained by the additional terms in Eq. (12). The logarith-
mic temperature law seems to be appeared for Case 1 as
shown in Fig. 5, while the logarithmic velocity law does
not appear as shown in Fig. 4 under the present numerical
conditions (Res = 300, Pr = 0.72). This difference would be
attributed to the profile of the turbulent Prandtl number
Prt ¼ hu01u02idhhi=dy=ðhu02h

0idhu1i=dyÞ shown in Fig. 6. Prt

decreases with increasing y+, and removes the bump of
mean temperature profile for Case 1 in Fig. 5, which is pro-
duced by the additional terms in Eq. (12). Note that no log-
arithmic temperature law is observed for Cases 2, 3, and 4,
which is due to the higher temperature on the opposite
wall.

The above analysis (Eqs. (10) and (12)) implies that both
apparent logarithmic velocity and temperature laws may
appear for the case with b = bh = 0 which corresponds to
the thermal flow with zero heat flux gradient in pure Cou-
ette flow. For the further discussion on the logarithmic
velocity and temperature laws, the experimental and
numerical studies at the higher Reynolds number would
be needed.

4.2. Turbulence statistics

The RMS temperature fluctuations (temperature vari-
ance) scaled by the friction temperature ðh0Þþrms ¼ ðh

0Þrms=hs

is shown in Fig. 7. The RMS velocity fluctuation is in good
agreement with the corresponding DNS data [24] and is
not shown here. The peak value of the temperature variance
in the wall coordinate increases in order of Case 1 (bh = �1),
Case 2 (bh = �0.5), Case 3 (bh = 0), and Case 4 (bh = + 0.5),
i.e., with increasing bh at Res = 300. And the difference in
ðh0Þþrms among cases is considerably large for y+ > 50. This
implies the possibility that the temperature fluctuation is
well arranged by a proper temperature scale, which reflects
the variation of bh. One of the candidates is the local
friction temperature defined as hL = qtotal/(qcpuL), where
uL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
stotal=q

p
is the local friction velocity. Fig. 8 shows
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Fig. 6. Profiles of turbulent Prandtl number.
temperature variance scaled by hL. It is noticeable that the
temperature fluctuation intensity is well scaled by hL close
to the lower wall at the same Reynolds number.

Fig. 9a and b show the profiles of streamwise turbulent
heat flux �hu01

þh0
þi and �hu01

þh0i=hL, respectively. Similar
to the RMS temperature fluctuation, the streamwise turbu-
lent heat flux is well scaled by using the local friction tem-
perature hL, while �hu01

þh0
þi increases with increasing bh.

Figs. 10a and b show the profiles of wall-normal turbulent
heat flux �hu02

þh0
þi and �hu02

þh0i=hL, respectively. The
wall-normal turbulent heat flux scaled by the local friction
temperature hL also collapses onto a single curve. This is
analytically explained as follows. The wall-normal heat flux
�hu02

þh0i=hL is given as

hu02
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¼ qcp
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In the turbulent region (st� s‘, qt� q‘), Eq. (13) is rewrit-
ten as follows:
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Eq. (14) indicates that the profile of hu02
þh0i=hL depends

only on the velocity field and is the same for all the cases
tested. Note that the anisotropy of the streamwise and
wall-normal turbulent heat flux is not altered by total heat
flux gradients as understood from Figs. 9b and 10b.

The budget data obtained by DNS are very helpful for
understanding the detailed mechanism of the profiles of
turbulence statistics such as temperature variance and heat
fluxes. The transport equation of temperature variance
kþh ¼ hh

0þ2i=2 is
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where the first to fourth terms are production Pþh , dissipa-
tion eþh , turbulent diffusion, and molecular diffusion,
respectively. The transport equation of the dissipation rate
of temperature variance eþh is as follows:
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where the first to sixth terms are mean gradient production,
gradient production, turbulent production, dissipation,
turbulent diffusion, and molecular diffusion, respectively.
The transport equation of turbulent heat flux hu0þi h0þi is
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where the first to sixth terms are production, dissipation,
pressure temperature-gradient correlation, pressure diffu-
sion, turbulent diffusion, and molecular diffusion,
respectively.

The budgets for Cases 1 and 3 agree well with existing
DNS data [3,12]. The budget profiles for kh and eh of Cases
1 and 3 are symmetric with respect to the center of the
channel. The profiles of hu01h

0i for Cases 1 and 3 are sym-
metric and anti-symmetric, respectively, while the profiles
of hu02h

0i for Cases 1 and 3 are anti-symmetric and symmet-
ric, respectively. The budget for Case 2 seems to be the
same as that of the lower half for Case 1, and the temper-
ature variance and turbulence heat flux generations are
small close to the upper wall. For simplicity, detailed bud-
gets for Cases 1, 2 and 3 are omitted here. The budgets of
the temperature variance, its dissipation rate, streamwise
and wall-normal turbulent heat fluxes are presented in
Fig. 11a–d, respectively, for Case 4 as a representative.
Although the terms in the budgets near the upper wall
are larger than those near the lower wall for Case 4, the
upper and lower profiles agree well with each other when
they are normalized by the corresponding wall variables.

In the budget of kh, the production term Pþh increases
with increasing bh on the lower wall side and balances with
the dissipation term eþh as shown in Fig. 12a and b. The
main terms in the budget of eh are the mean gradient pro-
duction, turbulent production, and dissipation terms as
shown in Fig. 11b, and their amplitudes increase with
increasing bh (not shown here).

In the wall-normal turbulent heat flux balance, the pro-
duction term Pþ2h and the pressure temperature-gradient
correlation term PTGþ2h are balanced as shown in Fig. 13a
and b. In addition, the amplitudes of the pressure diffusion
term PDþ2h and the turbulent diffusion term TDþ2h increase
with increasing the total heat flux gradient, and they bal-
ance with each other at the central region of the channel
as shown in Figs. 14a and b.

The production terms of temperature variance and wall-
normal turbulent heat flux scaled by the local friction tem-
perature, PþL

h ¼ P h=ðush
2
L=dvÞ and PþL

2h ¼ P 2h=ðu2
shL=dvÞ, are

presented in Figs. 15a and b, respectively. It can be found
that the production terms PþL

h and PþL
2h do not vary with bh,

which supports the usefulness of the new scaling using the
local friction temperature hL.

5. Conclusions

The new scaling of turbulence statistics for wall-
bounded thermal turbulent flow with different total heat
flux gradients was investigated using direct numerical sim-
ulation (DNS) of the incompressible turbulent channel flow
with passive scalar transport at Res = 300 and Pr = 0.72.
DNS for four cases were performed, where the non-dimen-
sional wall-normal gradients of the total heat flux bh are
�1, �0.5, 0 and +0.5. The dependence of bh on the turbu-
lence statistics is discussed using the DNS data. Tempera-
ture variance and turbulent heat flux were well scaled by
the local friction temperature hL at the same Reynolds
number. This finding was supported by the profiles of the
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corresponding production terms. The production and dissi-
pation terms are balanced in the budgets of kh and eh. In
the budget of the wall-normal turbulent heat flux hu02h

0i,
the production term and the pressure temperature-gradient
correlation term are balanced. An additional balance is
also observed between the pressure diffusion and turbulent
diffusion terms in the budget of hu02h

0i. The amplitudes of
balanced terms increase with increasing bh. In addition,
using the linear stress-heat flux model presented here, it is
shown that the appearance of the logarithmic temperature
profile is attributed to the distribution of the turbulent
Prandtl number, while the logarithmic velocity law does
not appear.
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turbulent heat transfer in channel flow with heat conduction in the
solid wall, J. Heat Transfer 123 (2001) 849–857.

[11] I. Tiselj, E. Pogrebnyak, C. Li, A. Mosyak, G. Hetsroni, Effect of wall
boundary condition on scalar transfer in a fully developed turbulent
flume, Phys. Fluids 13 (2001) 1028–1039.

[12] O. Iida, N. Kasagi, Y. Nagano, Direct numerical simulation of
turbulent channel flow under stable density stratification, Int. J. Heat
Mass Transfer 45 (2002) 1693–1703.

[13] H. Abe, H. Kawamura, Y. Matsuo, Surface heat-flux fluctuations in a
turbulent channel flow up to Res = 1020 with Pr = 0.025 and 0.71,
Int. J. Heat Fluid Flow 25 (2004) 404–419.

[14] L. Kleiser, U. Schumann, Treatment of incompressibility and
boundary conditions in 3-D numerical spectral simulations of plane
channel flows, in: E.H. Hirschel (Ed.), Proceedings of the Third
GAMM Conference on Numerical Methods in Fluid Mechanics,
Vieweg, Brauschweig, 1980, pp. 165–173.

[15] J. Werne, Incompressibility and no-slip boundaries in the Chebyshev-
tau approximation: Correction to Kleiserand Schumann’s influence-
matrix solution, J. Comput. Phys. 120 (1995) 260–265.

[16] A.G. Kravchenko, P. Moin, On the effect of numerical errors in large
eddy simulations of turbulent flows, J. Comput. Phys. 131 (1997) 310–
322.

[17] A.A. Wray, Minimal storage time-advancement schemes for spectral
methods, NASA-Ames Research Center, Moffett Field, CA, private
communication, 1986.

[18] P.R. Spalart, R.D. Moser, M.M. Rogers, Spectral methods for the
Navier–Stokes equations with one infinite and two periodic direc-
tions, J. Comput. Phys. 96 (1991) 297–324.

[19] C. Canuto, M. Hussaini, A. Quarteroni, T. Zang, Spectral Methods in
Fluid Dynamics, Springer, Berlin, 1988.

[20] Y. Morinishi, S. Tamano, K. Nakabayashi, Direct numerical simu-
lation of compressible turbulent channel flow between adiabatic and
isothermal walls, J. Fluid Mech. 502 (2004) 273–308.

[21] Y. Morinishi, S. Tamano, E. Nakamura, Numerical analysis of
incompressible turbulent channel flow with different thermal wall
boundary conditions, Trans. JSME, Ser. B 69 (2003) 1313–1320 (in
Japanese).

[22] D.B. Spalding, On similarity solutions for free-convection flow past
flat plates, J. Appl. Mech. 23 (1961) 455–458.

[23] A.A. Townsend, Equilibrium layers and wall turbulence, J. Fluid
Mech. 11 (1960) 97–120.

[24] K. Iwamoto, Y. Suzuki, N. Kasagi, Reynolds number effect on wall
turbulence: toward effective feedback control, Int. J. Heat Fluid Flow
23 (2002) 678–689.

[25] M.V. Zagarola, A.J. Smits, Mean-flow scaling of turbulent pipe flow,
J. Fluid Mech. 373 (1998) 33–79.


	New scaling of turbulence statistics for incompressible thermal channel flow with different total heat flux gradients
	Introduction
	Problem description
	Numerical methods and conditions
	Results and discussion
	Mean velocity and temperature profiles
	Turbulence statistics

	Conclusions
	Acknowledgements
	References


